Diversidade de "cabeça primeiro" mostra a unidade da evolução dos vertebrados

domingo, janeiro 01, 2012

'Head-First' Diversity Shown to Drive Vertebrate Evolution

ScienceDaily (Dec. 21, 2011) — The history of evolution is periodically marked by explosions in biodiversity, as groups of species try out a wide range of shapes and sizes. With a new analysis of two such adaptive radiations in the fossil record, researchers have discovered that these diversifications proceeded head-first.


Fossil fish. A new study of fish fossil records near extinction events contradicts previous models. (Credit: © psamtik / Fotolia)

By analyzing the physical features of fossil fish that diversified around the time of two separate extinction events, scientists from the University of Chicago and the University of Oxford found that head features diversified before body shapes and types. The discovery disputes previous models of adaptive radiations and suggests that feeding-related evolutionary pressures are the initial drivers of diversification.

"It seems like resources, feeding and diet are the most important factors at the initial stage," said lead author Lauren Sallan, graduate student in the Department of Organismal Biology and Anatomy at the University of Chicago. "Strange heads show up first -- crushing jaws, animals with big teeth, with long jaws -- but they're all pretty much attached to the same body."

Adaptive radiations underlie the evolution of dominant and diverse groups. After a major disruption, such as an extinction event, surviving species diversify into a myriad variety of forms. Modern examples of this diversity are the fish family of cichlids, with more than 1,000 documented species, or "Darwin's finches" of the Galapagos Islands, which exhibit many different beak types.

Evolutionary biologists have used these living species to propose at least two models of how adaptive radiations work. One model proposes a single "burst" of divergence followed by a long period of relative stability. Another, sometimes known as the "general vertebrate model," introduced the idea of staged divergences, with habitat-driven changes in body type preceding diversification of head types.
...

Read more here/Leia mais aqui: Science Daily

+++++

Heads or tails: staged diversification in vertebrate evolutionary radiations

Lauren Cole Sallan1,* and Matt Friedman2

Author Affiliations

1Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
2Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK

*Author for correspondence (laurensallan@gmail.com).

Abstract

Adaptive radiations, bouts of morphological divergence coupled with taxonomic proliferation, underpin biodiversity. The most widespread model of radiations assumes a single round, or ‘early burst’, of elevated phenotypic divergence followed by a decline in rates of change or even stasis. A vertebrate-specific model proposes separate stages: initial divergence in postcranial traits related to habitat use, followed by diversification in cranial morphology linked to trophic demands. However, there is little empirical evidence for either hypothesis. Here, we show that, contrary to both models, separate large-scale radiations of actinopterygian fishes proceeded through distinct cranial and later postcranial stages of morphological diversification. Early actinopterygians and acanthomorph teleosts dispersed in cranial morphospace immediately following the end-Devonian extinction and the Cretaceous origin of the acanthomorph clade, respectively. Significant increases in postcranial morphological variation do not occur until one interval after cranial diversification commenced. Therefore, our results question the universality of the ‘general vertebrate model’. Based on the results of model-fitting exercises and application of the divergence order test, we find little evidence that the early onset of cranial diversification in these two radiations is due to elevated rates of cranial change relative to postcranial change early in their evolutionary histories. Instead, postcranial and cranial patterns are best fit by an Ornstein–Uhlenbeck model, which is characterized by constant evolutionary rates coupled with a strong central tendency. Other groups have been reported to show early saturation of cranial morphospace or tropic roles early in their histories, but it is unclear whether these patterns are attributable to dynamics similar to those inferred for our two model radiations.

Actinopterygii, ecomorphology, cladogenesis, biodiversity, disparity, mass extinction

Received November 22, 2011.
Accepted December 1, 2011.

This journal is © 2011 The Royal Society

+++++